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Abstract
Using the algebraic Bethe ansatz, we consider the correlation functions of the
integrable higher spin chains. We apply a method recently developed for the
spin 1

2 Heisenberg chain, based on the solution of the quantum inverse problem.
We construct a representation for the correlation functions on a finite chain for
arbitrary spin. Then we show how the string solutions of the Bethe equations
can be considered in the framework of this approach in the thermodynamic
limit. Finally, a multiple integral representation for the spin 1 zero-temperature
correlation functions is obtained in the thermodynamic limit.

PACS numbers: 71.45Gm, 02.30.Ik, 03.65.Fd, 11.30.Na, 75.10.Jm

1. Introduction

A new method of computation of the correlation functions and of the form factors of the
Heisenberg spin12 chains developed in [1–3] based on the algebraic Bethe ansatz [4] and the
resolution of the quantum inverse problem [1, 5] has provided a possibility to calculate a very
large class of correlation functions for a finite chain and in the thermodynamic limit. The
zero temperature correlation functions (which are defined as mean values of some products
of local operators with respect to the ground state of the model) were obtained [3] as multiple
integrals, which coincide for the case without magnetic field with the results obtained using
the vertex operators approach [6, 7]. However, the new method gave a better understanding of
the structure of these results. It was shown, in particular, that the expressions under integrals
can be separated into two parts with different origin: an algebraic part which depends on the
choice of local operators and does not depend on the choice of the ground state and an analytic
(or determinant) part which, in contrast, is fixed uniquely by the ground state.

This very particular structure permits to hope that these results can be generalized
for several more general situations in particular for the temperature-dependent correlation
functions for the Heisenberg spin12 but also for other integrable models with the same
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R-matrix, and first of all for the higher spin chains (they can be considered as the first step to
the future generalizations). These two apparently very different problems have however one
common detail: the main difficulty is the analysis of excited states in the first case or of more
complicated ground states for the second one. In both cases we should deal withbound states
or, more precisely, with the string solutions of the Bethe equations. The understanding of the
influence of these bound states (quantum breathers) is a very important step in the calculation
of the temperature- and time-dependent correlation functions.

For this reason, before considering a more complicated example of temperature-dependent
correlation functions,we consider the higher spin Heisenberg models. This case is more simple
as the ground state of a higher spinXXX chain contains only strings of one kind and not a
mixture of different types of strings as an arbitrary excited state. This problem is important
also from another point of view as it can give some information about other integrable models
including integrable quantum field theories.

In this paper we consider the correlation functions of theXXX higher spin chains. This
model was first considered by Kulishet al in [8] where the notion offusion was introduced.
It was solved by means of the algebraic Bethe ansatz by Takhtajan [9] and independently by
Babujian in [10]; the thermodynamics of this model was considered in [10]. TheXXZ version
of higher spin chains was introduced in [11] and solved in [12], but these models are not
considered here for several reasons. The correlation functions of theXXZ spin 1 model in
the anti-ferromagnetic regime were calculated in [13–15] using the vertex operator approach.
Here we propose a different way of calculation of the correlation functions based on the
algebraic Bethe ansatz.

As in [3] the first step of computation of the correlation functions is the solution of the
quantum inverse problem. Such a solution for a very large class of quantum integrable models
including the higher spin Heisenberg chains was recently obtained [5] in a form very similar
to the spin1

2 case. Taken together with the results for the scalar products of the Bethe states
[16–18] it permits obtaining a representation for the finite chain correlation functions for
arbitrary spin. At this stage one should take the thermodynamic limit and, hence, introduce
the string solutions. We illustrate this procedure using the simplest example of the spin 1
chain. We would like to underline that a similar procedure is possible also for higher spin
models but it leads to more cumbersome calculations and we present only one form of the
result for this case without detailed derivation.

The main difficulty which arises from the presence of bound states is the fact that the
algebraic part becomes singular. This problem can be solved by choosing the integration
contours in the multiple integral representations taking into account the sign of the finite size
corrections to the string picture [19–21]. After this modification one can see that two parts
appear again and the determinant part once again is defined uniquely by the ground state. Such
a result is given in section 5.

The main result of this paper is that the mean values with respect to the states containing
bound states can be calculated within the framework of our approach. It means in particular
that some new tools introduced here can also be used to calculate the temperature-dependent
correlation functions.

This paper is organized as follows. In section 2 we introduce the higher spin Heisenberg
chains following the papers of Takhtajan [9] and Babujian [10]. The solution of the
inverse problem for these models [5] is given in section 3. This solution is used to obtain
representations for the correlation functions on a finite chain for arbitrary spin in section 4.
We show, in particular, how to override the additional algebraic difficulties appearing in the
higher spin case. The thermodynamic limit of the spin 1 chain is considered in the two last
sections. We show how to deal with 2-strings in the thermodynamic limit using the simplest
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example of one-point functions in section 5. This first example permits to elaborate some
simple rules which deal with strings for general correlation functions (section 6).

2. XXX Heisenberg chain with arbitrary spin

In this section we introduce theXXX Heisenberg chains for arbitrary spin. Here, we follow in
general the papers of Takhtajan [9] and Babujian [10].

Unlike the spin 1
2 case we start directly from theL-operator and later construct the

Hamiltonian from the transfer matrix. It is necessary to obtain an integrable generalization
of the usual Heisenberg chain (a direct generalization of the spin1

2 XXX Hamiltonian is not
integrable for higher spins). However, theL-operator can be obtained by direct generalization:

Lm(λ) = 1

λ− i
(
s + 1

2

) (λ− i
(
szm + 1

2

) −is−m
−is+m λ + i

(
szm + 1

2

)) . (2.1)

One should note that for thisL-operator the auxiliary space is two dimensional but the quantum
space has 2s + 1 dimensions. The matricessz, s± are the spin operators in the representation
of spins. ThisL-operator has the same intertwining relation with the rational 4× 4 R matrix

R(λ) =




1 0 0 0
0 λ

λ−i
−i
λ−i 0

0 −i
λ−i

λ
λ−i 0

0 0 0 1


 (2.2)

as in the spin1
2 case

R12(λ− µ) (Lm)1(λ) (Lm)2(µ) = (Lm)2(µ) (Lm)1(λ) R12(λ− µ). (2.3)

As usual, indices 1 and 2 inL-operators denote two different auxiliary spaces.
The next step is the construction of the monodromy matrix for a spin chain ofM sites

T (λ) = LM(λ− ξM)LM−1(λ− ξM−1) · · ·L1(λ− ξ1) ≡
(
A(λ) B(λ)

C(λ) D(λ)

)

with arbitrary inhomogeneity parametersξj . For this monodromy matrix one can also write
the ‘commutation relation’ withR-matrix

R12(λ− µ) T1(λ) T2(µ) = T2(µ) T1(λ) R12(λ− µ) (2.4)

and it contains the commutation relation for the operatorsA(λ), B(λ), C(λ) andD(λ) acting
in the quantum space.

Up to this point all the construction was the same as in the spin1
2 case but to construct

local Hamiltonians from the monodromy matrix one should introduce some new concepts.
The trace identities for the spin12 case were based on the fact thatLn(0) is just a transposition
operator in the tensor product of the auxiliary and quantum spaces. Now the quantum and
auxiliary spaces have different numbers of dimensions. Hence it is necessary to construct
a monodromy matrix with a (2s + 1)-dimensional auxiliary space. Such a construction was
proposed by Kulishet al [8] and it is calledfusion.

The fusedL-operatorL(s)n (λ) can be constructed as a following projection on the
symmetric subspace in the tensor product of 2s auxiliary spaces (this symmetric subspace
has exactly 2s + 1 dimensions) of the following product of localL-operators:

L(s)n (λ) = P +
a1,...an

La2s ,n(λ + 2is − i) · · ·La2,n(λ + i)La1,n(λ)P
+
a1,...an

(2.5)
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where indicesaj mark the corresponding auxiliary spaces andP +
a1,...an

is the symmetrizer
(projector on the symmetric subspace). Thus we constructed theL-operator with (2s + 1)-
dimensional auxiliary space and satisfying the following property:

L(s)a,n(−is) = Pa,n
wherePa,n is the transposition in the tensor product of the auxiliary space and local quantum
space. This property is crucial for the construction of local Hamiltonians [10] and for the
solution of the inverse problem [5]. The fused monodromy matrix is constructed as

T (s)a (λ) = L(s)M (λ− ξM)L(s)M−1(λ− ξM−1) · · ·L(s)1 (λ− ξ1).
The fused transfer matrix, which is the trace of the monodromy matrix taken in the auxiliary
space,

τ (s)(λ) = traT
S
a (λ)

commutes not only with the transfer matrices for any value of parameterλ but also with the
‘ordinary’ transfer matrixA(λ) +D(λ) (as it is a polynomial function ofA(λ) +D(λ)):[

τ (s)(λ), τ (s)(µ)
]

=
[
τ (s)(λ),A(µ) +D(µ)

]
= 0. (2.6)

It means, in particular, that the Hamiltonians constructed from the fused transfer matrix in the
homogeneous caseξj = 0 using the trace identities

H(s) = const
d

dλ
τ (s)(λ)

∣∣∣∣
λ=−is

(2.7)

also commute with the ‘ordinary’ transfer matrix and can be diagonalized by thealgebraic
Bethe ansatz [4] procedure. The Hamiltonians constructed by trace identities are local,
translation invariant and can be written as polynomials of degree 2s of the local spin–spin
interaction terms [9]

H(s) =
M∑
m=1

Q2s (smsm+1) (2.8)

Q2s(x) =
2s∑
j=1


 j∑
k=1

1

k


 2s∏

l=0
l �=j

x − xl
xj − xl (2.9)

wheresn = (sxn , syn , szn) are spin operators andxl = 1
2[l(l + 1)− 2s(s + 1)]. The first example

of such a Hamiltonian is the spin 1 case where

H(1) = 1

4

∑
m=1

smsm+1 − (smsm+1)
2. (2.10)

As we already mentioned, to diagonalize this Hamiltonian one can use the usual algebraic
Bethe ansatz. We start from the ferromagnetic state|0〉 with all the spins up

s+n |0〉 = 0 ∀n
which is an eigenstate of the Hamiltonians (2.7) and consider the action of the generalized
creation operatorsB(λ) on this state. It is easy to see that a state

B(λ1)B(λ2) · · ·B(λN )|0〉
is an eigenstate of the ordinary transfer matrix

(A(µ) +D(µ))B(λ1)B(λ2) · · ·B(λN )|0〉 = τ (µ, {λj })B(λ1)B(λ2) · · ·B(λN )|0〉 (2.11)
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and, hence, of the Hamiltonians if the parameters{λj } satisfy the followingBethe equations

ϕj ({λ}) ≡
(
λ + is

λ− is

)M N∏
k=1

λj − λk − i

λj − λk + i
= −1. (2.12)

These Bethe states have exactly the same property as the Bethe states for the spin1
2 case; in

particular, one can prove the Gaudin formula [16, 17] for their norms

〈0|
N∏
j=1

C(λj )

N∏
k=1

B(λk)|0〉 = (−1)N
∏
j �=k

λj − λk − i

λj − λk detN ′({λ}) (2.13)

 ′({λ})ab = −i
∂

∂λb
logϕa({λ})

and Slavnov formula [1, 18] for scalar products of a Bethe state
∏N
k=1B(λk)|0〉 and a state

〈0|∏Nj=1C(µj ) with arbitrary set of parameters

〈0|
N∏
j=1

C(µj )

N∏
k=1

B(λk)|0〉 = detNT ({λ,µ})
detNV ({λ,µ}) (2.14)

T ({λ,µ})ab = ∂

∂λa
τ(µb, {λ}) V ({λ,µ})ab = 1

λa − µb
whereτ (µb, {λ}) is the eigenvalue of the ordinary transfer matrix (2.11).

The thermodynamic limit for the higher spin Heisenberg model is slightly more
complicated than in spin1

2 case. The ground state of the spins XXX model in the
thermodynamic limit can be constructed using the ‘string’ solutions of the Bethe equations. It
was shown in [9] that for the spins chain the ground state contains only strings of length 2s.
Such a string solution can be written as follows:

λak = µk + i

(
a − s − 1

2

)
whereµk is real and called the string centre. The particularity of the ground state is the fact
that it contains only strings of one particular length.

The density of string centres in the ground state can be obtained from the following
integral equation similar to the Lieb equation in spin1

2 case:

ρ2s(λ) + 2
2s−1∑
a=1

∫ ∞

−∞
dµKa(λ− µ)ρ2s(µ) +

∫ ∞

−∞
dµK2s(λ− µ)ρ2s(µ)

=
2s∑
k=1

Ks

(
λ + i

(
s +

1

2
− k

))
(2.15)

where the kernelsKj(λ) are defined as

Ka(λ) = 2a

(λ + ia)(λ− ia)
. (2.16)

The solution of this equation can be easily obtained

ρ2s(λ) = 1

2 cosh(πλ)
. (2.17)

It is a remarkable property of the spin chains that for any spin the density is the same as
in the spin1

2 case, but here one should note that the ground states are very different, being
constructed from different types of strings.
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These results for thermodynamics of the spin chains of arbitrary spin obtained by Takhtajan
[9] and Babujan in [10] will be used in the next sections for the calculation of the correlation
functions.

3. Inverse problem

In this section we recall the solution of the inverse scattering problem for the spins XXX
chain. In other words we reconstruct the local spin operators in terms of the fused monodromy
matrices. We follow the approach proposed by Maillet and Terras in [5].

To illustrate the results of [5] we start with the spin 1 chain. In this case the fused
monodromy matrix has the following form:

T (2)(λ) =




A(λ + i)A(λ) 1√
2
(A(λ + i)B(λ) + B(λ + i)A(λ)) B(λ + i)B(λ)

1√
2
(A(λ + i)C(λ) 1

2(A(λ + i)D(λ) +D(λ + i)A(λ) 1√
2
(D(λ + i)B(λ)

+C(λ + i)A(λ)) +B(λ + i)C(λ) +C(λ + i)B(λ)) +B(λ + i)D(λ))

C(λ + i)C(λ) 1√
2
(D(λ + i)C(λ) + C(λ + i)D(λ)) A(λ + i)A(λ)



.

This matrix can be used to construct the operatorsszn ands±n , but here we are mostly interested
in the reconstruction of the local elementary matrices

(Eα
′,α)ab = δα′aδαb.

The local operatorsE
α′
j ,αj

j can be expressed in terms of the corresponding monodromy matrix
elements:

E
α′
m,αm
m =

m−1∏
j=1

τ (2)(ξj − i) T (2)
αm,α′

m
(ξm − i)

M∏
j=m+1

τ (2)(ξj − i) (3.1)

whereτ (2)(λ) = tr0 T
(2)(λ) is the fused transfer matrix.

This result can be easily generalized for an arbitrary spins. Now the fused monodromy
matrix is a(2s + 1)× (2s + 1)matrix and its elements are again sums of different products of
2s fundamental monodromy matrix elements:

T
(2s)
α,α′ (λ) = 1(

Cα−1
2s Cα

′−1
2s

)1/2

∑
j1+···+j2s−2s=α−1
k1+···+k2s−2s=α′−1

Tj2sk2s (λ + 2si − i) · · · Tj2k2(λ + i)Tj1k1(λ)

(3.2)

whereCkn are binomial coefficients. For example the corner matrix elementT
(2s)
1,1 (λ) is just a

product of 2s operatorsA(λ− ki), k = 0, . . . ,2s − 1.
To reconstruct the elementary local operators one should again dress these monodromy

matrix elements by the corresponding fused transfer matrices:

E
α′
m,αm
m =

m−1∏
j=1

τ (2s)(ξj − is) T (2s)
αm,α′

m
(ξm − is)

M∏
j=m+1

τ (2s)(ξj − is). (3.3)

The shifts of the inhomogeneity parameters are chosen in such a way that the eigenvalue
of the fused transfer matrix taken in the pointsξj + is on a Bethe state is

τ (2s)(ξj − is)B(λ1) · · ·B(λN )|0〉 =
N∏
k=1

λk − ξj − is

λk − ξj + is
B(λ1) · · ·B(λN )|0〉. (3.4)
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This is the solution of the quantum inverse problem for the arbitrary spin Heisenberg chain.
Now we can use these representations to calculate the correlation functions and to do it
we should first of all understand how these complicated combinations of the fundamental
monodromy matrix elements act on Bethe states.

4. Finite lattice correlation functions

As our ultimate goal is to calculate the mean values of products of local operators with respect
to a Bethe state and, in particular to the ground state, following the same ideas as in [3] we
should consider the action of the local operators on Bethe states. As the Bethe states are
eigenstates of the fused transfer matrix we need only to consider the action of the elements
of the fused monodromy matrix. The result of this action is the ‘algebraic part’ of the final
expression for the correlation functions. We begin by considering the action of a single local
operator on a Bethe state.

First of all we recall the action of the operatorsA, B andD (elements of the fundamental
monodromy matrix) on a ‘bra’ Bethe state

〈0|
N∏
k=1

C(λk)A(λN+1) =
N+1∑
a′=1

a(λa′)

∏N
k=1(λk − λa′ − i)∏N+1
k=1
k �=a′
(λk − λa′)

〈0|
N+1∏
k=1
k �=a′

C(λk) (4.1)

〈0|
N∏
k=1

C(λk)D(λN+1) =
N+1∑
a=1

d(λa)

∏N
k=1(λa − λk − i)∏N+1
k=1
k �=a
(λa − λk)

〈0|
N+1∏
k=1
k �=a

C(λk) (4.2)

〈0|
N∏
k=1

C(λk) B(λN+1) =
N+1∑
a=1

d(λa)

∏N
k=1(λa − λk − i)∏N+1
k=1
k �=a
(λa − λk)

×
N+1∑
a′=1
a′ �=a

a(λa′)

(λN+1 − λa′ − i)

∏N+1
j=1
j �=a
(λj − λa′ − i)∏N+1

j=1
j �=a,a′

(λj − λa′)
〈0|

N+1∏
k=1
k �=a,a′

C(λk). (4.3)

It can be seen from these formulae that there are two different type of sums produced by the
action of the monodromy matrix elements ‘A-type’ and ‘D-type’ (action of the operatorB
produce for example one ‘A-type’ sum and one ‘D-type’ sum). In our case the eigenvalues of
the operatorsA(λ) andD(λ) in the ferromagnetic state are

a(λ) = 1 d(λ) =
M∏
j=1

(
λ− ξj + is

λ− ξj − is

)
.

One should note that in order to calculate the correlation functions we should act by the
‘strings’ of operators. Consider first the action of one local operatorE

α,α
m . As shown in

section 3 it can be written as a sum of ordered products of the fundamental monodromy matrix
elements taken in the pointsξ − is, ξ − is + i, . . . , ξ + is− i. The monodromy matrix elements
acting on the ground state produce the sums on the ‘D-type’ indicesaj and ‘A-type’ indices
a′
j and the number of such sums is the same for all the products corresponding to a fixed

local operator, namelyα−1 ‘D-type’ sums and 2s − α′ + 1〉 ‘A-type’ sums. Introducing the
new notationsλN+j = ξ − i(s − j + 1) we can just repeat the calculations for the spin1

2 [3],
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however, taking into account that nowd(λN+j ) �= 0 for j > 1:

〈0|∏N
k=1C(λk) (τ

(2s)(ξ − is))−1 ∏2s
j=1 Tαj ,α′

j
(λN+j )

∏N
k=1B(λk)|0〉

〈0|∏N
k=1C(λk)

∏N
k=1B(λk)|0〉

= 1∏2s−1
k=1 ik k!

N+2s∑
aj ,a

′
j=1

H{aj ,a′
j }(λ1, . . . , λN+2s )

det-({a, a′})
det ′

where the functionH is defined as

H{aj ,a′
j }({λ}) = (−1)2s∏

k>l

(
λbk − λbl − i

) 2s−α+1∏
j=1


j−1∏
k=1

(
λa′
j
− λN+k + i

) 2s∏
k=j+1

(
λa′
j
− λN+k

)

×
α−1∏
j=1

d
(
λaj
) N∏
k=1

λaj − λk − i

λaj − λk + i


j−1∏
k=1

(
λaj − λN+k − i

) 2s∏
k=j+1

(
λaj − λN+k

) .
(4.4)

For the indicesaj , a′
j , bj , etc we conserve the notation of the spin1

2 case:

{b1, . . . , bm} = {a′
2s−α+1, . . . , a

′
1, a1, . . . , aα−1}.

The determinant in the denominator is the Gaudin determinant and the matrix in the numerator
is also the Gaudin matrix with some replaced columns. We will consider this ‘analytic part’
in general later on in this section, and for the ground state for the spin 1 case in the last
sections. One can easily obtain representations for the replaced columns from the scalar
product formula. Here we will consider the ‘algebraic part’ of the expression (4.4). Taking
into account values of the parametersλN+k we obtain

H{aj ,a′
j }({λ}) = (−1)α−1∏

k>l

(
λbk − λbl − i

) α−1∏
j=1

d
(
λaj
) N∏
k=1

λaj − λk − i

λaj − λk + i

×
(

2s−1∏
k=1

(λaj − ξ + i(s − k))
)

2s−α+1∏
j=1


j−1∏
k=1

(
λa′
j
− ξ + i(s − k + 2)

)

×
2s∏

k=j+1

(
λa′
j
− ξ + i(s − k + 1)

) . (4.5)

Here one can see that the product corresponding to the ‘D-type’ parameters is the same for
any element of the sum in (3.2). Moreover, from this result one can see thataj > N gives a
non-zero contribution only ifaj > N + 1 and there isak = aj − 1, k < j . It leads to the
conclusion that such a term should containd(ξ − is) which is zero. It means that as in spin1

2
case the summations overaj should be taken only from 1 toN.

The product corresponding to the ‘A-type’ parameters is not the same for all the terms but
taking the sum in (3.2) and symmetrizing over the permutations of the ‘D-type’ and ‘A-type’
parameters separately one can simplify it and finally obtain

fα(1, s) ≡ 〈0|∏Nk=1C(λk)E
α,α
m

∏N
k=1B(λk)|0〉

〈0|∏N
k=1C(λk)

∏N
k=1B(λk)|0〉

= (−1)α−1 Cα−1
2s∏2s−1

k=1 ik k!

N∑
aj=1

N+2s∑
a′
j=1

Hα{aj ,a′
j }(λ1, . . . , λN+2s )

det-({a, a′})
det ′ (4.6)
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Hα{aj ,a′
j }({λ}) =

α−1∏
k,l=1
k>l

λak − λal(
λak − λal

)2 + 1

2s−α+1∏
k,l=1
k>l

λa′
k
− λa′

l(
λa′
l
− λa′

k

)2
+ 1

×
α−1∏
k=1

2s−α+1∏
l=1

1

λak − λa′
l
− i

α−1∏
j=1

(
2s−1∏
k=1

(
λaj − ξ + i(s − k))

)

×
2s−α+1∏
j=1

(
2s−1∏
k=1

(
λa′
j
− ξ + i(s − k + 1)

))
. (4.7)

One can see from this representation that terms witha′
j > N produce non-zero contributions

if a′
j = N + 2s or if there isa′

k = a′
j + 1. It means that the operatorsC(ξ − i(s − k)) which

appear in the scalar product after the action of the local operators should form a ‘substring’
without holes starting fromξ − is. For example, states like

〈0|C(ξ − is)C(ξ − i(s − 1)) · · ·C(ξ − i(s − k))
∏
b�N
b �=aj ,a′j

C(λb)

produce non-zero contributions to the correlation functions but the contribution of states such
as

〈0|C(ξ − is)C(ξ − i(s − 2))
∏
b�N
b �=aj ,a′j

C(λb) or 〈0|C(ξ − i(s − 1))
∏
b�N
b �=aj ,a′j

C(λb)

is zero. This property is rather important as the matrix appearing in the scalar product is much
simpler in this case.

Consider the determinant det- appearing in (4.4) from the scalar product

〈0|C(ξ − is)C(ξ − i(s − 1)) · · ·C(ξ − i(s − k + 1))
N∏

b=k+1

C(λb)

N∏
a=1

B(λa)|0〉.

After extracting the normalization coefficients we obtain the following matrix:

-ab =  ′
ab b > k

-a1 = 1

(λa − ξ + is)(λa − ξ + i(s − 1))
b = 1

-ab = 1

(λa − ξ + i(s − b + 1))(λa − ξ + i(s − b))
+fb

1

(λa − ξ + i(s − b + 2))(λb − ξ + i(s − b + 1))
1< b � k

where

fb = d(ξ − i(s − b + 1))
N∏
j=1

λj − ξ + i(s − b + 2)

λj − ξ + i(s − b) .

The columns with 1< b � k can be considered as sums of two columns and the second one
does not contribute to the determinant as it is always linearly dependent on the columns with
a′ < a. Thus the matrix- can be replaced bỹ-,

-̃ab =  ′
ab b > k

-̃ab = 1

(λa − ξ + i(s − b + 1))(λa − ξ + i(s − b)) ≡ p′
b(λa − ξ) b � k.
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A similar calculation can also be done form-point functions leading to the following
representation:

f{α,α′}(m, s) ≡ 〈0|∏N
k=1C(λk)

∏m
l=1E

α′
l ,αl
l

∏N
k=1B(λk)|0〉

〈0|∏Nk=1C(λk)
∏N
k=1B(λk)|0〉

= (−1)P(α
′
l−1)

(∏m
l=1C

αl−1
2s C

α′
l−1

2s

)1/2

(∏2s−1
k=1 ik k!

)m∏m
j,k=1
j>k

∏2s
r=1

∏2r−1
n=1 (ξj − ξk − i(r − n))

×
N∑

ajl=1

N+2sm∑
a′
jl=1

Hα{ajl ,a′
jl }({λ})

det-({a, a′})
det ′ . (4.8)

Here we introduced some new notations. In every sitel there is a local operatorE
α′
l ,αl

l which
produces sums overαl−1 ‘D-type’ indicesajl and 2s + 1 − α′

l ‘A-type’ indicesa′
j l , and we

defineλN+2sl+k = ξl − i(s − k + 1). We obtain the algebraic part:

Hα,α
′

{ajl,a′
jl }
({λ}) =

m∏
l=1

2s−1∏
k=1


αl−1∏
j=1

(
λajl − ξl + i(s − k)) 2s+1−α′

l∏
j=1

(
λa′
jl

− ξl + i(s − k + 1)
)

×
∏
n�l
GDDln ({ajl, ajn})GDAln ({ajl, a′

jn})GADln ({a′
j l, ajn})GAAln ({a′

j l, a
′
jn}).

(4.9)

Where the ‘two sites’ contributionsGln for two different sitesl andn are

GDDln =
∏αl−1
j=1

(
λajl − ξn − is

)∏αn−1
k=1

(
λakn − ξl + is

)
∏αl−1
j=1

∏αn−1
k=1

(
λajl − λakn − i

) (4.10)

GDAln =
∏αl−1
j=1

(
λajl − ξn − is

)∏2s−αn+1
k=1

(
λa′
kn

− ξl − i(s − 1)
)

∏αl−1
j=1

∏2s−α′
n+1

k=1

(
λajl − λa′

kn
− i
) (4.11)

GADln =
∏2s−α′

l+1
j=1

(
λa′
jl

− ξn + i(s + 1)
)∏αn−1

k=1

(
λakn − ξl + is

)
∏2s−α′

l+1
j=1

∏αn−1
k=1

(
λakn − λa′

jl
− i
) (4.12)

GAAln =
∏2s−α′

l+1
j=1

(
λa′
jl

− ξn + i(s + 1)
)∏2s−αn+1

k=1

(
λa′
kn

− ξl − i(s − 1)
)

∏2s−α′
l+1

j=1

∏2s−α′
n+1

k=1

(
λa′
kn

− λa′
jl

− i
) (4.13)

and the diagonal terms are given by

GDDll G
AA
ll =

αl−1∏
j,k=1
j>k

λajl − λakl(
λajl − λakl

)2 + 1

2s−α′
l+1∏

j,k=1
j>k

λa′
jl

− λa′
kl(

λa′
jl

− λa′
kl

)2
+ 1

(4.14)

GADll G
DA
ll =

αl−1∏
j=1

2s−α′
l+1∏

k=1

1

λajl − λa′
kl

− i
. (4.15)

Here we obtained the algebraic part of the expression for anm-point correlation function
for an arbitrary spin Heisenberg chain. Considering the determinant part we can easily
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see using the same arguments as in the one-point case that the main proposition about
‘the substrings’(the terms in the sum (4.8) witha′

j l > N produce non-zero contributions
if a′

j l = N + 2sk k < l or if there isa′
kl = a′

j l + 1 with k < j ) is also valid in them-point
case. It means that the determinants are always simple and contain only Gaudin columns and
columnsp′

a(λb − ξk). More precisely, every term of the sum (4.8) contains a determinant
which is obtained from the scalar product

〈0|
M∏
l=1

kl∏
j=1

C(ξl − i(s − j + 1))
N∏

b=k1+···+km+1

C(λb)

N∏
a=1

B(λa)|0〉

wherekl = a′
jminl

−1, the ‘substring end’a′
jminl

being the minimala′
j l > N in the corresponding

term. The corresponding matrix appearing in the sum (4.8) has the following columns:

-̃ab =  ′
ab b >

m∑
l=1

kl

-̃ab = 1

(λa − ξl + i(s − j + 1))(λa − ξl + i(s − j)) = p′
j (λa − ξl)

l−1∑
r=1

kr < b �
l∑
r=1

kr

wherej = b −∑l−1
r=1 kr .

Thus we have a representation for the correlation functions for a finite arbitrary spin
Heisenberg chain. Being in some sense very similar to their spin1

2 counterparts these
representations are rather complicated for big spins. For this reason in the next sections
we will consider only the first generalization of the results of [3] which is the spin 1chain.

The next step of our approach is the thermodynamic limit for the ground state. On this
stage the main difference with the spin1

2 case appears as the ground state is constructed of
bound states (2s-strings). It produces some new difficulties which will be considered in the
next section using the simplest example of the one-point functions.

5. One-point functions

To illustrate the last stage of the calculation, i.e. the introduction of the string solution of the
Bethe equations for the ground state we begin with the simplest example, namely with the
one-point functionsfk(1) (corresponding to the diagonal elementary matricesEkk).

Consider the simplest correlation function (one-point emptiness formation probability) of
the spin 1XXX chain in the homogeneous case:

f3(1) = 〈vac|
(
τ
(2)
2

)−1
(−i)D(0)D(−i)|vac〉. (5.1)

Using the action of the operatorsD on the vacuum and the scalar product formula we easily
obtain (there is no difference with the case spin1

2) for the finite chain:

f3(1) = i
∑
a

∑
b �=a

λaλb

λa − λb − i

det-

det ′ (5.2)

where ′ is the Gaudin matrix:

 ′
jk = (MK(λj )−

∑
l

K(λj − λl))δjk +K(λj − λk) (5.3)

with

K(λ) = 2

(λ + i)(λ− i)
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and the matrix- is obtained from the scalar product:

-jk =  ′
jk j �= a, b

-ak = 1

λk(λk − i)
≡ p′

+(λk)

-bk = 1

λk(λk + i)
≡ p′

−(λk).

Hence one can again divide one matrix by another and reduce it to a 2× 2 matrix:(
 ′−1

-
)
jk

= δjk j �= a, b(
 ′−1

-
)
ak

= φ+
k(

 ′−1
-
)
bk

= φ−
k

whereφ±
k are the solutions of the following systems of linear equations:

(MK(λk)−
∑
j

K(λj − λk))φ±
k +

∑
j

K(λj − λk))φ±
j = p′

±(λk). (5.4)

Thus the one-point function (5.1) is given by

f3(1) = i
∑
a

∑
b �=a

λaλb

λa − λb − i
det

(
φ+
a φ+

b

φ−
a φ−

b

)
. (5.5)

In the thermodynamic limit the ground state of the spin 1XXX chain is built of 2-strings

M → ∞: λ2k−1 → µk +
i

2
λ2k → µk − i

2
Im(µk) = 0.

To obtain the equations for the analytic part in the thermodynamic limit one should take into
account the finite size corrections to this string picture as some terms in (5.4) become singular.
To analyse the excited states with finite energy of theXXX spin 1

2 one usually considers first
the string limit and only then the thermodynamic limit, as these corrections are exponentially
small. However, for the ground state of the spin 1XXX model one cannot use this method in a
rigorous way2 as the corrections to the string picture calculated in [19–22] are of the order1

M
:

λ2k−1 − λ2k − i = 2i
αk

M
+ o

(
1

M

)
α > 0.

The correctionα is always positive and it makes possible to rewrite the system of linear
equations (5.4) as integral equations in the thermodynamic limit with a special choice of the
integration contours near the singular point:

ϕ±
1 (µ) +

∫ ∞

−∞
dλK(µ− λ)ϕ±

1 (λ) +
∫ ∞

−∞
dλK(µ− λ + i + i0)ϕ±

2 (λ) = p′
±
(
µ +

i

2

)
(5.6)

ϕ±
2 (µ) +

∫ ∞

−∞
dλK(µ− λ)ϕ±

2 (λ) +
∫ ∞

−∞
dλK(µ− λ− i − i0)ϕ±

1 (λ) = p′
±
(
µ− i

2

)
whereϕ±

1 (µk) ≡ Mρ(µk)φ
±
2k−1 andϕ±

2 (µk) ≡ Mρ(µk)φ
±
2k. Here we used the integral

equation for density of strings in the ground state

ρ(λ) = 1

2 cosh(πλ)
.

2 This method leads to the same result for the correlation functions as the one described later but in a more complicated
way.
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The solution of this system can be easily obtained,

ϕ+
1(λ) = ρ(λ) ϕ+

2(λ) = 0
(5.7)

ϕ−
1 (λ) = 0 ϕ−

2 (λ) = ρ(λ).
Now we can substitute this result to the expression for the one-point function (5.5),

replacing sums by integral avoiding the singular point in thesame way as in the integral
equation (taking into account the sign of the finite size corrections) (5.6).

f3(1) = i

4

∫ ∞

−∞
dλ
∫ ∞

−∞
dµ

1

cosh(πλ) cosh(πµ)

((
λ + i

2

) (
µ− i

2

)
λ− µ + i0

−
(
λ− i

2

) (
µ + i

2

)
λ− µ− 2i

)
.

(5.8)

One of these two integrals can be calculated as only the pole in the pointµ = λ contributes.
We finally obtain

f3(1) = π

2

∫ ∞

−∞
dλ

λ2 + 1
4

cosh2(πλ)
= 1

3
. (5.9)

Of course this result can be obtained directly from the symmetry of the model, but this
calculation illustrates well how to deal with strings in our method and it can be useful not only
for the more general case ofm-point functions which will be considered in the next section
but also for the computation of more general correlation functions, depending, for example,
on the temperature.

Two other one-point functions can be calculated in a rather similar way but here we should
consider also the ‘A-type’ sums which contain more terms than ‘D-type’ sums considered in
the previous example. We will show, using the simplest example of the one-point functions
f2(1) andf1(1) that this problem can be solved exactly as in the spin1

2 case by moving the
corresponding contour of integration.

Consider the function

f2(1) = 1

2
〈vac|τ−1

2 (−i)(A(0)D(−i) +D(0)A(−i) +C(0)B(−i) +B(0)C(−i))|vac〉.
We easily obtain a finite lattice representation for this function (4.6)

f2(1) = −2i
N∑
a=1

N∑
b=1
b �=a

λa(λb + i)

λa − λb − i
det

(
φ+
a φ+

b

φ−
a φ−

b

)
+ 2

∑
a

λa

λa − i
φ−
a . (5.10)

One should mention that the sum over indexa is aD-type sum and the sum over indexb is a
A-type sum and it contains one additional term (only one because of the substring limitation).

As in the previous case we can rewrite these sums as integrals in the thermodynamic
limit:

f2(1) = − i

2

∫ ∞

−∞
dλ
∫ ∞

−∞
dµ

1

cosh(πλ) cosh(πµ)

((
λ + i

2

) (
µ + i

2

)
λ− µ + i0

−
(
λ− i

2

) (
µ + 3i

2

)
λ− µ− 2i

)

+
∫ ∞

−∞
dλ

1

cosh(πλ)

λ− i
2

λa − 3 i
2

. (5.11)

One should note that functionρ(λ) = 1
2 cosh(πλ) is the same as in the spin12 case and has a

pole atλ = − i
2 and its residue is

2π i Resρ(λ)|λ=− i
2

= −1.
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It means in particular that shifting the contour of integration on the variableµ to the line
parallel to the real axis with Im(µ) = −1 one crosses the pole ofρ(λ) for the second double
integral in (5.11) (for the first double integrals one can move the contour without crossing any
poles) and the contribution of the pole is exactly similar to the single integral in (5.11). Finally
we get

f2(1) = i

2

∫ ∞

−∞
dλ
∫ ∞

−∞
dµ

1

cosh(πλ) cosh(πµ)

((
λ + i

2

) (
µ− i

2

)
λ− µ + i

−
(
λ− i

2

) (
µ + i

2

)
λ− µ− i

)
.

Here once again one can reduce this expression to a single integral:

f2(1) = π

2

∫ ∞

−∞
dλ

1
2 − 2λ2

cosh2(πλ)
= 1

3
. (5.12)

Considering the last one-point functionf1(1) we can obtain in a similar way that one
should move both contours to obtain the same double integral representation as forf3(1):

f1(1) = π

2

∫ ∞

−∞
dλ

λ2 + 1
4

cosh2(πλ)
= 1

3
. (5.13)

In this section we considered the simplest examples of the correlation functions; however,
this simple example illustrates quite well the basic properties of the thermodynamic limits for
the ground state constructed of the 2-strings. We have also shown that theA-type sums should
be replaced by the integrations over shifted contours (as in spin1

2 case).
In the last section we show how this technique can be used for the generalm-point functions

for the spin 1 HeisenbergXXX chain. Their proofs are in general absolutely equivalent to the
calculations in this section, but contain some very cumbersome formulae which we generally
omit for the intermediate steps. Also, this method can be used for arbitrary spin and in the
end we give one of the possible multiple integral representations for the correlation functions
of the higher spin chains.

6. Correlation functions

In this section we generalize the results of the previous section for the generalm-point equal-
time correlation functions of theXXX chain spin 1 in the thermodynamic limit.

We calculate the following correlation functions or, more precisely, the elementary blocks
which permit construction of anym-point correlation function:

f{α,α′}(m) =
〈
ψg
∣∣∏m

j=1E
α′
j ,αj

j

∣∣ψg 〉
〈ψg |ψg〉 (6.1)

whereE
α′
j ,αj

j are elementary local 3× 3 matricesEα
′,α
lk = δl,α′δk,α and|ψg〉 is the ground

state of the model (in the spin 1 case the number of quasi-particleN in the ground state is
equal to the number of sitesM).

For a finite spin 1 chain we obtained (4.8) that this correlation function can be represented
as multiple sums

f{α,α′}(m) = (−1)P(α
′
l−1)

(∏m
l=1C

αl−1
2 C

α′
l−1

2

)1/2

im
∏m

j,k=1
j>k

(ξj − ξk)2((ξj − ξk)2 + 1)

×
∑

{aj ,a′
j }

H{a,a′}({λ})det2mS̃({a, a′}). (6.2)
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In the thermodynamic limit the solution of the Bethe equations corresponding to the ground
state consists of 2-strings distributed with the following density:

ρtot(λ) = 1

M

M∑
n=1

ρ(λ− ξn).

As in the spin1
2 case it is convenient to introduce a set of indicesbk, which is the set ofajl, a′

j l

ordered in a special way:

{b1, . . . , b2m} = {{a′
jm}, . . . , {a′

j1}, {aj1}, . . . , {ajm}}
with local subsets{aj1},1 � j � αl − 1 and{a′

j l},1 � j � 3−α′
l , (these subsets can contain

one, two or no elements).
Let us now consider the determinant part of the expression (4.8). In the thermodynamic

limit we can divide the matrix in the numerator by the Gaudin matrix, or more precisely, we
can calculate det( ′−1

-({a, a′})). This can be written as a determinant of a 2m × 2m matrix
and the matrix elements are given by the inhomogeneous version of the integral equations
(5.6) withp±(µ − ξj ± i

2) in the right-hand side. Due to the translation invariance of this
equations we obtain the same solution with a shiftϕ±

1,2(µ− ξj ). Finally we obtain

detM( ′−1
-({a, a′})) = det2mS̃({a, a′})

S̃jk({a, a′}) = −δbj−M,k bj > M

S̃j2k−1({a, a′}) = 1 + (−1)bj

2

ρ
(
λbj − ξk − i

2

)
ρtot

(
λbj − i

2

) bj � M (6.3)

S̃j2k({a, a′}) = 1 − (−1)bj

2

ρ
(
λbj − ξk + i

2

)
ρtot

(
λbj + i

2

) bj � M.

Now all the sums overbl from 1 to M can be replaced by integrals taking into account
that we obtain a sum of two integrals obtained frombl = 2j, j = 1, . . . ,M/2, and
bl = 2j −1, j = 1, . . . ,M/2, dealing with the contours near the singularities of the algebraic
part in the same way as in the previous section. Replacing sums by integrals we use the
following rules and notations:
M/2∑

bl=2j−1
j=1

−→
∫ ∞+ i

2+i0

−∞+ i
2+i0

dλl ρtot

(
λl − i

2

) M/2∑
bl=2j
j=1

−→
∫ ∞− i

2−i0

−∞− i
2−i0

dλl ρtot

(
λl +

i

2

)

M/2∑
akr=2j−1
j=1

−→
∫ ∞+ i

2+i0

−∞+ i
2+i0

dνkr ρtot

(
νkr − i

2

) M/2∑
akr=2j
j=1

−→
∫ ∞− i

2−i0

−∞− i
2−i0

dνkr ρtot

(
νkr +

i

2

)

M/2∑
a′
kr

=2j−1
j=1

−→
∫ ∞+ i

2+i0

−∞+ i
2+i0

dν′
kr ρtot

(
ν′
kr − i

2

) M/2∑
a′
kr

=2j
j=1

−→
∫ ∞− i

2−i0

−∞− i
2−i0

dν′
kr ρtot

(
ν′
kr +

i

2

)
.

In this notation the set{λl} is the same set as{νkr, ν′
kr } but ordered in a special way:

{λ1, . . . , λ2m} = {{ν′
km}, . . . , {ν′

k1}, {νk1}, . . . , {νkm}}.
We will also use the following parameters:

εl = 1

2
if λl = νkr (D-type)

εl = −1

2
if λl = ν′

kr (A-type)
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we can also associate to everyλl the corresponding site numberrl if λl = νkrl or λl = ν′
krl

.
This notation is very useful in simplifying our formulae.

Replacing the sums by two integrals one should mention that for different contours for
λj we obtain different functions in the determinant, namelyϕ±

1 (λj − ξk − i
2) for the upper

contour andϕ±
2 (λj − ξk + i

2) for the lower one. To simplify the formulae we introduce the
following function:

φ±(λ) = ϕ±
1

(
λ− i

2

)
Im(λ) > −1

2 (6.4)
φ±(λ) = ϕ±

2

(
λ +

i

2

)
Im(λ) < −1

2
.

(Note that we can deal with this function as with an analytic function if the integration contours
do not cross the line Im(λ) = −1

2).
We should now analyse the terms witha′

kr > M. As in the spin1
2 case they can be written

as integrals around the corresponding poles of the determinant part in the pointsλj = ξk (for
the upper contour),λj = ξk − i (for the lower contour). More precisely, we can replace the
complete sum overa′

kr > M by the following integral:

∑
a′
kr=2j

−→
(∫ ∞− i

2−i0

−∞− i
2−i0

+
m∑
l=1

∮
;′
l

)
dν′
kr ρtot

(
ν′
kr +

i

2

)

∑
a′
kr=2j−1

−→
(∫ ∞+ i

2+i0

−∞+ i
2+i0

+
m∑
l=1

∮
;l

)
dν′
kr ρtot

(
ν′
kr − i

2

)
.

where;l and;′
l are small contours around the pointsξ l andξl − i. It means that as in the

spin 1
2 case the contribution of the poles can be absorbed into the integrals by moving all the

contours forν′
kr (A-type variables) down by i (to avoid crossing of some additional poles one

should move first all the lower contours and then the upper ones).
Now we can write a multiple integral representation for the correlation functions of the

spin 1XXX chain:

f{α,α′}(m) = im

(∏m
l=1C

αl−1
2 C

α′
l−1

2

)1/2

∏m
j,k=1
j>k

(ξj − ξk)2((ξj − ξk)2 + 1)

(∫ ∞− i
2−i0

−∞− i
2−i0

+
∫ ∞+ i

2+i0

−∞+ i
2+i0

)
dλ1

· · ·
(∫ ∞− i

2−i0

−∞− i
2−i0

+
∫ ∞+ i

2+i0

−∞+ i
2+i0

)
dλ2mH{α,α′}({λl}) det2mS({λ}). (6.5)

The algebraic part for spin 1 can be written as

H{α,α′}({λl}) =
2m∏
l=1

m∏
k=1

(λl − ξk)
∏2m
l=1

(∏rl−1
k=1 (λl − ξk − 2iεl)

∏m
k=rl+1(λl − ξk + 2iεl)

)
∏
l>n

(
λl − λn − i(εl + εn)2

)
(6.6)

and the 2m × 2m matrixS is defined as

Sj,2k−1 = φ−(λj − ξk)
(6.7)

Sj,2k = φ+(λj − ξk).
This is one of many possible forms of the results which can be easily generalized to the

higher spin cases. One should note that the correlation functions are written once again as a
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multiple integral (or a sum of multiple integrals) and the integrals are taken over the solution
of Bethe equations for the ground state (2-strings here). The expression under the integral can
be once again separated into two distinctive parts: one defined by the choice of local operators
(algebraic part) and the other by the ground state (determinant).

This result can be also rewritten in many different forms. First of all as for the one-point
functions one can reduce the number of integration and obtain the result only asm integrals
(this is a particularity of the spin 1 case and it cannot be done for the higher spins). First of all
one should note thatSj,2k−1 = 0 for upper integration contours andSj,2k = 0 for lower ones
(5.7). This means that the determinant has a block-diagonal structure and the integrals can be
rewritten as the sum of integrals withm integrals over the upper contours andm integrals over
lower ones:

f{α,α′}(m) =
im
(∏m

l=1C
αl−1
2 C

α′
l−1

2

)1/2

∏m
j,k=1
j>k

(ξj − ξk)2((ξj − ξk)2 + 1)

∑
{λ}={µ}∪{µ′ }

(−1)[σ ]
∫ ∞− i

2−i0

−∞− i
2−i0

dµ1

· · ·
∫ ∞− i

2−i0

−∞− i
2−i0

dµm

∫ ∞+ i
2+i0

−∞+ i
2+i0

dµ′
1 · · ·

∫ ∞+ i
2+i0

−∞+ i
2+i0

dµ′
m

× H{α,α′}({λl})detmW
({
µ +

i

2

})
W
({
µ′ − i

2

})
(6.8)

where the sum is taken over all possible partitions of the set{λ} with 2m elements into two
subsets withm elements and [σ ] is the sign of the following permutation:

σ({λ1, . . . , λ2m}) = {µ1, . . . , µm,µ
′
1, . . . , µ

′
m}

and detW({µ′}) is the spin1
2 determinant

Wjk = ρ(µj − ξk).
This representation is also convenient as it contains onlym × m matrices and only meromorphic
functions. Now we can move the contours in this integral to obtain that only poles in
λj − λk + i(εj + εK) contribute, which gives a representation of the result as a sum over all
possible splitting of the set of 2m variablesλl into m pairs which form stringsλl = νj − i

2,
λ′
l = νj + i

2 but every term contains onlym-integrals over the string centresνj:

f{α,α′}(m) = (2π)m
(∏m

l=1C
αl−1
2 C

α′
l−1

2

)1/2

∏m
j,k=1
j>k

(ξj − ξk)2((ξj − ξk)2 + 1)

∫ ∞

−∞
dν1 · · ·

∫ ∞

−∞
dνm det2mW({ν})

×
∑

{1,2,...,2m}=∪mj=1{lj l′j }
G{α,α′}({ν}, {{lj l′j }, j = 1 . . . m}). (6.9)

The algebraic part here is however much more complicated than in the spin1
2 case. It

is written as a sum of(2m − 1)!! ≡ 1 × 3 × · · · × (2m− 1) terms, where every term is the
corresponding residue of the general algebraic partH{α,α′}

G{α,α′}({ν}, {{lj l′j }, j = 1 . . .m})
= Res|λl1=λl′1+i(εl1+εl′1

)2 . . .Res|λlm=λl′m+i(εlm+εl′m)
2H{α,α′}({λl}). (6.10)

This is another possible form for the final result. It is rather particular as the correlation
functions are represented asm-integrals as in the spin12 case and the analytic part is just the
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square of the analytic part for spin12. It is also important to note that the homogeneous limit
of this expression can be obtained exactly as in the spin1

2 case.

lim
ξj→0

det2mW({µ})∏m
j,k=1
j>k

(ξj − ξk)2 = det2mW
hom({µ}) Whom

jk = 1

(k − 1)!

∂k−1

∂µk−1
j

ρ(µj ) (6.11)

Once again the analytic part will be just the square of the corresponding spin1
2 algebraic part.

Thus we obtained several equivalent expressions for the correlation functions of the spin
1 HeisenbergXXX chain. It is interesting to note that this result looks quite different in
comparison to the corresponding results obtained in [13, 14] (it is quite clear that for the
same quantity one can write many different integral representations and sometimes it is rather
difficult to prove that they are equivalent). The first (6.8) result has a form which is much
simpler, even if we now have 2m integrals instead ofm. Moreover similar results can be
obtained for higher spins (4.8) in the thermodynamic limit, with more complicated contours
(in some sense we integrate alwaysover the strings), determinant of a 2ms × 2ms matrix and
corresponding general algebraic part:

f{α,α′}(m, s) =
(∏m

l=1C
αl−1
2s C

α′
l−1

2s

)1/2

(∏2s−1
k=1 ik k!

)m∏m
j,k=1
j>k

∏2s
r=1

∏2r−1
n=1 (ξj − ξk − i(r − n))

×
∫

2s−strings
dλ1 . . .

∫
2s−strings

dλ2sm H(s){α,α′}(λ1, . . . , λ2sm) det2smS(s)({λ}).
(6.12)

Here the intergals are taken over the strings with corresponding little shifts

∫
2s−strings

dλ f (λ) =
2s∑
k=1

∫ ∞−(i+i0)(2s−k− 1
2 )

−∞−(i+i0)(2s−k− 1
2 )

dλ f (λ)

the algebraic part is

H(s){α,α′}({λl}) =

2s−1∏
p=1

2sm∏
l=1

m∏
k=1

(λl − ξk − i(s − p))



×
∏2sm
l=1

(∏rl−1
k=1 (λl − ξk − 2isεl)

∏m
k=rl+1(λl − ξk + 2isεl)

)
∏
l>n

(
λl − λn − i(εl + εn)2

) (6.13)

and the 2sm × 2sm matrixS(s) is defined as

Sj,2s(k−1)+l = ρ
(
λj − ξk + 2si − il +

i

2

)
−2s + l − 1< Im(λj ) < −2s + l

0 otherwise. (6.14)

This representation can be proved in a very similar way to the spin 1 case (6.8).
In this paper we discussed the correlation functions of the higher spinXXX chains and

have shown that even if the ground state contains bound states the correlation functions can
be calculated. We hope to use these result to calculate the mean values of local operators
with respect to any excited state for the spin1

2 Heisenberg chains and, hence, to obtain a
representation for the finite temperature correlation functions.
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[21] Kl ümper A, Batchelor M T and Pearce P A 1991J. Phys. A: Math. Gen. 24 2341
[22] Suzuki J 1999J. Phys. A: Math. Gen. 32 2341


